
 1

gtcusbr.dll API Specification Sheet

[Device access API]

[Description]

This product is an API to provide input and output functions for devices that can be

controlled by gtcusbr.sys. Input and output processing functions are performed via the

handle obtained from the Device Open function. This handle is generated within the

DLL, and therefore cannot be used directly by Windows API functions (ReadFile,

CloseHandle, etc.).

In addition to the error codes described here, errors that occur in normal Windows API

input and output operations are also returned as is.

Please use the Windows API GetLastError() function to obtain the error codes. If for any

reason you cannot use the GetLastError() function (for example, when the GetLastError()

function is being used within an interpreter module from LabView VI or a similar

virtual instrument), please use the GtcUSBr_GetLastError() function.

[Usage Method]

� Please install gtcusbr.h to enable use of this API.

#include “gtcusbr.h”

� When performing a linking operation, please also link gtcusbr.lib.

� Place gtcusbr.dll in the Windows system directory, or else in a directory with a Run

Application file.

 2

GtcUSBr_OpenDevice()

Function:

 Device Open

Description:

 If there is a device among the devices controlled by gtcusbr.sys that is not

being used, this function opens the device and returns that handle.

 If there are multiple devices that have not been opened, the device found first

will be opened. The device to be opened cannot be selected.

Declaration:

HANDLE GtcUSBr_OpenDevice(void);

Returned values:

The device handle is returned if the Open operation was successful.

NULL is returned if the Open operation failed.

Error codes:

GetLastError() GtcUSBr_GetLastError()

ERROR_DEVICE_NOT_CONNECTED : A valid device is not connected

ERROR_NO_MORE_DEVICES : There are no devices that are not

being used.

ERROR_NOT_ENOUGH_MEMORY : Insufficient memory

* To select a device to be controlled, obtain its ID number by using :IF:ID?

command.

 3

GtcUSBr_CloseDevice()

Function:

Device Close

Description:

The Device Close function closes the device with the specified handle and frees

up all the associated resources.

Declaration:

BOOL GtcUSBr_CloseDevice(

 HANDLE hDevice

);

Argument:

hDevice : The handle obtained by GtcUSBr_OpenDevice

Returned values:

TRUE is returned if the Close operation was successful, and FALSE if it failed.

Error codes:

GetLastError() GtcUSBr_GetLastError()

ERROR_INVALID_HANDLE : An invalid handle value was specified.

 4

GtcUSBr_ReadDevice()

Function:

Synchronous reading

Description:

This function performs synchronous reading of data from the device.

Declaration:

BOOL GtcUSBr_ReadDevice(

 HANDLE hDevice,

 LPVOID lpBuffer,

 DWORD nNumberOfBytesToRead,

 LPDWORD lpNumberOfBytesRead,

 DWORD dwTimeOut

);

Arguments:

hDevice : The device handle obtained by GtcUSBr_OpenDevice

lpBuffer : The data read destination buffer

nNumberOfBytesToRead : The number of bytes to be read

lpNumberOfBytesRead : The number of data bytes that were actually read

dwTimeOut : The time interval specified (in ms) for reading of the

number of bytes specified in nNumberOfBytesToRead.

If Infinite is specified, return is not made until the

number of specified bytes has been read.

Returned values:

 TRUE is returned if the specified number of bytes could be read, and FALSE if

the specified number could not be read.

 FALSE being returned does not necessarily mean that the number of bytes

read was 0.

Error codes:

GetLastError() GtcUSBr_GetLastError()

 5

ERROR_INVALID_HANDLE : An invalid handle value was specified.

ERROR_TIMEOUT : A timeout occurred before the specified number

of bytes could be read.

ERROR_BUSY : The specified device is already performing a read

operation.

 6

GtcUSBr_ReadDeviceEx()

Function:

Asynchronous reading

Description:

The ReadDevice() function performs asynchronous reading of data from the

device.

It activates a thread in the function to perform asynchronous reading of data

from the device.

The activated thread waits until the data is read, and then performs event

notification with respect to the event handle indicated in the overlap structure

(there are times when reading up to the specified number of bytes is not

performed).

Declaration:

BOOL GtcUSBr_ReadDeviceEx(

HANDLE hDevice,

LPVOID lpBuffer,

DWORD nNumberOfBytesToRead,

LPGtcUSBr_OVERLAPPED lpGtcUSBr_Overlapped

);

Arguments:

hDevice : The device handle obtained by GtcUSBr_OpenDevice

lpBuffer : The data read destination data buffer

nNumberOfBytesToRead :The number of bytes to be read

lpGtcUSBr_Overlapped : Pointer to the Overlap structure

 7

Overlap structure:

typedef struct {

 DWORD dwErrorCode;

 DWORD dwNumberOfBytesTransfered;

 HANDLE hEvent;

} GtcUSBr_OVERLAPPED, *LPGtcUSBr_OVERLAPPED;

dwErrorCode : Error code

dwNumberOfBytesTransfered : Actual number of bytes read

hEvent : Event handle

Returned values:

TRUE if the thread for reading was able to be activated, FALSE if it wasn’t.

Error codes:

GetLastError() GtcUSBr_GetLastError()

ERROR_INVALID_HANDLE : An invalid handle value was specified.

ERROR_BUSY : The specified device is already performing a read

operation.

Error codes received by the Overlap structure:

ERROR_SUCCESS : Normal completion

ERROR_HANDLE_EOF : The specified number of bytes could be read.

 8

GtcUSBr_WriteDevice()

Function:

Synchronous writing

Description:

This function performs synchronous writing of data to the device.

Declaration:

BOOL GtcUSBr_WriteDevice(

 HANDLE hDevice,

 LPVOID lpBuffer,

 DWORD nNumberOfBytesToWrite,

 LPDWORD lpNumberOfBytesWrite,

 DWORD dwTimeOut

);

Arguments:

hDevice : The device handle obtained by

GtcUSBr_OpenDevice

lpBuffer : The data write destination buffer

nNumberOfBytesToWrite : The number of bytes to be written

lpNumberOfBytesWrite : The number of data bytes that were actually

written

dwTimeOut : The time interval specified (in ms) for writing of

the number of bytes specified in

nNumberOfBytesToWrite. If Infinite is specified,

return is not made until the specified number of

bytes has been written.

Returned values:

 TRUE is returned if the specified number of bytes could be written, and

FALSE if they could not be written

FALSE being returned does not necessarily mean that the number of bytes

written was 0.

 9

Error codes:

GetLastError() GtcUSBr_GetLastError()

ERROR_INVALID_HANDLE : An invalid handle value was specified.

ERROR_TIMEOUT : A timeout occurred before the specified number

of bytes could be written.

ERROR_BUSY : The specified device is already performing a

write operation.

 10

GtcUSBr_WriteDeviceEx()

Function:

Asynchronous writing

Description:

The WriteDeviceEX() function performs asynchronous writing of data to the

device.

It activates a thread in the function to perform asynchronous writing of data to

the device.

The activated thread waits until the data is written, and then performs event

notification with respect to the event handle indicated in the overlap structure

(there are times when writing up to the specified number of bytes is not

performed).

Declaration:

BOOL GtcUSBr_WriteDeviceEx(

 HANDLE hDevice,

 LPVOID lpBuffer,

 DWORD nNumberOfBytesToWrite,

 LPGtcUSBr_OVERLAPPED lpGtcUSBr_Overlapped

);

Arguments:

hDevice : The device handle obtained by GtcUSBr_OpenDevice

lpBuffer : The data write destination data buffer

nNumberOfBytesToWrite : The number of bytes to be written

lpGtcUSBr_Overlapped : Pointer to the Overlap structure

 11

Overlap structure:

typedef struct {

 DWORD dwErrorCode;

 DWORD dwNumberOfBytesTransfered;

 HANDLE hEvent;

} GtcUSBr_OVERLAPPED, *LPGtcUSBr_OVERLAPPED;

dwErrorCode : Error code

dwNumberOfBytesTransfered : Actual number of bytes written

hEvent : Event handle

Returned values:

TRUE if the thread for writing was able to be activated, FALSE if it wasn’t.

Error codes:

GetLastError() GtcUSBr_GetLastError()

ERROR_INVALID_HANDLE : An invalid handle value was specified.

ERROR_BUSY : The specified device is already performing a write

operation.

Error codes received by the Overlap structure:

ERROR_SUCCESS : Normal completion

 12

GtcUSBr_GetLastError()

Function:

Gets extended error information

Description:

This function gets extended codes for the errors that occurred in each GtcUSBr

API. Use this function if there is some reason that you cannot use the Windows

API GetLastError() function. Error codes can be obtained for each function

(but not for different threads).

*Available from Ver 1.21 onwards.

Declaration:

DWORD GtcUSBr_GetLastError();

Arguments: None

Returned values: Extended error codes

 Refer to each API for further details.

January 20, 2003

Graphtec Corporation

